

## Letters to the Editor

## Heronian Triangles

I refer to the article "Heronian Triangles" which appeared in Mathematical Medley Volume 22 No. 2 September 1995. I would like to give here a construction of infinitely many primitive scalene Heronian triangles which are not right-angled.

Let k be any positive integer. Let  $\alpha = 2k^2 + 2k + 1$ ,  $\beta = 2k^2 - 2k + 1$  and  $\gamma = (\alpha\beta - 1)(\alpha + \beta)$ . Then the triple (a, b, c) where  $a = \beta + \gamma$ ,  $b = \gamma + \alpha$ ,  $c = \alpha + \beta$ , forms a primitive scalene Heronian triple which is not Pythagorean.

First of all we verify easily that the area of a triangle with sides a, b, c is an integer. It is namely equal to  $\alpha\beta(\alpha+\beta)$   $\sqrt{\alpha\beta}-1$ , where  $\alpha\beta-1=4k^4$  is a perfect square. Moreover,  $a\neq b\neq c\neq a$  since  $\alpha\neq\beta\neq\gamma\neq\alpha$ , so (a,b,c) is a scalene Heronian triple.

Next, let d be a common divisor of a, b, c. According to the definitions a and b are odd. It follows that d is odd. Now d is also factor of  $c + a - b = 2\beta$  as well as  $b + c - a = 2\alpha$ . Since d is odd, d must then divide both  $\alpha$  and  $\beta$ , and thus also  $\alpha - \beta$ , where  $\alpha - \beta = 4k$ . Then once again d is a factor of k since d is odd. It follows that d is a common divisor of k and k. But  $gcd(\alpha, k) = 1$  by definition of k. Hence k is a primitive triple.

Lastly, we note that  $\gamma > \alpha > \beta$ , so that b is the longest side of a triangle with sides a, b and c. We have  $b^2 - a^2 = (\gamma + \alpha)^2 - (\beta + \gamma)^2 = (\alpha - \beta)(\alpha + \beta + 2\gamma) = 4k(\alpha + \beta + 2\gamma)$ ; and  $c^2 = (\alpha + \beta)^2 = 4(2k^2 + 1)^2$ .

Now when k = 1, (a, b, c) = (25, 29, 6); and if k > 1, k cannot be a factor of  $(2k^2 + 1)^2$  (because k and  $2k^2 + 1$  are coprime). Thus in any case  $b^2 - a^2 = c^2$  cannot hold, so (a, b, c) is not a Pythagorean triple. This completes the proof.

Wee Hoe Teck Hwa Chong Junior College



## Figure it out...

The item "Figure it out ..." in the last issue of Mathematical Medley (Vol. 22 No. 2 September 1995) was said to be extracted from a project "1995" by two lower secondary students.

Perhaps there are still some young students interested in a little fun with a project "1996". A possible result of such a project is attached.

> Lee Chong Leng Singapore 640453

| 1  | $= 1 + (9 - 9) \times 6$                    | $35 = -19 + 9 \times 6$                        | $68 = 1 + \sqrt{9} + (\log_3 9)^6$             |
|----|---------------------------------------------|------------------------------------------------|------------------------------------------------|
| 2  | $= 1 + (\sqrt{9} + \sqrt{9}) \div 6$        | $36 = 1 \times (\sqrt{9} + \sqrt{9}) \times 6$ | $69 = [1 + (\sqrt{9})!] \times 9 + 6$          |
| 3  | $= 1 \times (9 + 9) \div 6$                 | $37 = 1 + (\sqrt{9} + \sqrt{9}) \times 6$      | $70 = (1 + \sqrt{9})^{\sqrt{9}} + 6$           |
| 4  | = 19 - 9 - 6                                | $38 = -1 + \sqrt{9} + (\sqrt{9})! \times 6$    | $71 = -1 + (\sqrt{9} + 9) \times 6$            |
| 5  | = -1 - 9 + 9 + 6                            | $39 = (1 + \sqrt{9})! + 9 + 6$                 | $72 = (1 + \sqrt{9}) \times \sqrt{9} \times 6$ |
| 6  | $= 1 \times 9 - 9 + 6$                      | $40 = 1 + \sqrt{9} + (\sqrt{9})! \times 6$     | $73 = 19 + (9 \times 6)$                       |
| 7  | = 1 + 9 - 9 + 6                             | $41 = -1 + (\sqrt{9})! + (\sqrt{9})! \times 6$ | $74 = -1 + 9 \times 9 - 6$                     |
| 8  | $= 1 + 9 \div 9 + 6$                        | $42 = (1 + \sqrt{9}) \times 9 + 6$             | $75 = 1 \times 9 \times 9 - 6$                 |
| 9  | $= \sqrt{(1 \times 9)} + (9 - 6)!$          | $43 = 1 + (\sqrt{9})! + (\sqrt{9})! \times 6$  | $76 = 1 + 9 \times 9 - 6$                      |
| 10 | $= 19 - \sqrt{9} - 6$                       | $44 = -1 - 9 + 9 \times 6$                     | 77 = -19 + 96                                  |
| 11 | = -1 + (9 + 9 - 6)                          | $45 = 1 \times (-9 + 9 \times 6)$              | $78 = (-1 + 9) \times 9 + 6$                   |
| 12 | $= 1 \times 9 + 9 - 6$                      | $46 = 1 - 9 + 9 \times 6$                      | $79 = 1 + (\log_{\sqrt{3}} 9)! + 9 \times 6$   |
| 13 | = 1 + 9 + 9 - 6                             | $47 = -1 + 9 \times (\sqrt{9})! - 6$           | $80 = -1 + 9 \times (\sqrt{9} + 6)$            |
| 14 | = -1 + 9 + (9 - 6)!                         | $48 = 1 \times 9 \times (\sqrt{9})! - 6$       | $81 = 1 \times 9 \times (\sqrt{9} + 6)$        |
| 15 | $= 1 \times 9 + (9 - 6)!$                   | $49 = 1 + 9 \times (\sqrt{9})! - 6$            | $82 = 1 + 9 \times (\sqrt{9} + 6)$             |
| 16 | = 19 - 9 + 6                                | $50 = -1 - \sqrt{9} + 9 \times 6$              | $83 = -1 + 9! \div [(\sqrt{9})! \times 6!]$    |
| 17 | $= -1 + 9 + \sqrt{9} + 6$                   | $51 = (-1) \times \sqrt{9} + 9 \times 6$       | $84 = (1 + 9) \times 9 - 6$                    |
| 18 | $= 1 \times 9 + \sqrt{9} + 6$               | $52 = 1 - \sqrt{9} + 9 \times 6$               | $85 = 1 + 9! \div [(\sqrt{9})!x6!]$            |
| 19 | $= 1 + \sqrt{9} + 9 + 6$                    | $53 = (-1) \times 9 \times (9 - 6)!$           | $86 = -1 + 9 \times 9 + 6$                     |
| 20 | $= -1 + \sqrt{9} + \sqrt{9} \times 6$       | $54 = 1 \times 9 \times (9 - 6)!$              | $87 = 1 \times 9 \times 9 + 6$                 |
| 21 | $= 1 \times \sqrt{9} + \sqrt{9} \times 6$   | $55 = 1 + 9 \times (9 - 6)!$                   | $88 = 1 + 9 \times 9 + 6$                      |
| 22 | = 19 + 9 - 6                                | $56 = -1 + \sqrt{9} + 9 \times 6$              | $89 = -1 + (\sqrt{9})! \times (9 + 6)$         |
| 23 | = -1 + 9 + 9 + 6                            | $57 = 19 \times (9 - 6)$                       | $90 = 1 \times (\sqrt{9})! \times (9 + 6)$     |
| 24 | $= 1 \times 9 + 9 + 6$                      | $58 = 1 + \sqrt{9} + 9 \times 6$               | $91 = 1 + (\sqrt{9})! \times (9 + 6)$          |
| 25 | = 1 + 9 + 9 + 6                             | $59 = -1 + 9 \times (\sqrt{9})! + 6$           | 92 = -1 + 99 - 6                               |
| 26 | $= -1 + \sqrt{9} \times (\sqrt{9} + 6)$     | $60 = (19 - 9) \times 6$                       | $93 = 1 \times 99 - 6$                         |
| 27 | $= (1 + \sqrt{9})! + 9 - 6$                 | $61 = 1 + 9 \times (\sqrt{9})! + 6$            | 94 = 1 + 99 - 6                                |
| 28 | $= 1 + \sqrt{9} \times (\sqrt{9} + 6)$      | $62 = -1 + 9 + 9 \times 6$                     | $95 = (-1)^9 + 96$                             |
| 29 | $= -1 + (\sqrt{9})! \times (\sqrt{9})! - 6$ | $63 = 1 \times 9 + 9 \times 6$                 | $96 = 1^9 \times 96$                           |
| 30 | $= (1 + 9) \times (9 - 6)$                  | $64 = 1 + 9 + 9 \times 6$                      | $97 = 1^9 + 96$                                |
|    |                                             | $65 = 1 + [(\sqrt{9})! \div \sqrt{9}]^6$       | $98 = -1 + \sqrt{9} + 96$                      |
| 32 | $= -1 + 9 \times \sqrt{9} + 6$              | $66 = (-1 + 9) \times 9 - 6$                   | $99 = 1 \times \sqrt{9} + 96$                  |
| 33 | $= 1 \times 9 \times \sqrt{9} + 6$          | $67 = 1 + (9 + \log_3 9) \times 6$             | $100 = 1 + \sqrt{9} + 96$                      |
| 34 | = 19 + 9 + 6                                |                                                |                                                |

Editor's Note: Note that expressions for 67, 68 and 79 as appeared above are not satisfactory. Can you figure out why?